RAS BiologyГенетика Russian Journal of Genetics

  • ISSN (Print) 0016-6758
  • ISSN (Online) 3034-5103

The Genetic Study of a Museum Anthropological Sample from the Urban Burial of Staraya Ryazan of the 11th-13th Centuries

PII
S30345103S0016675825060062-1
DOI
10.7868/S3034510325060062
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 6
Pages
70-81
Abstract
Old (Staraya) Ryazan has a special place in the history of Rus' cities. Following its destruction by Batu's troops in December 1237, the city declined and was ultimately abandoned in the 14th century. The new city was built in a different place. Studies of the population of Old Ryazan based on anthropological museum collections, allow us to assess the genetic structure of the urban population mainly of the preMongol period. The article discusses the results of the analysis of one sample from the materials obtained during the excavations of A.V. Selivanov. The results of anthropological and whole-genome analysis showed that the sample under study belonged to a woman. Reconstruction and analysis of the complete sequence of mitochondrial DNA (mtDNA) indicated its belonging to the Western European haplogroup HV4a1a. This study is the first finding of this mitochondrial haplogroup among the medieval population of Rus'. The discovered mtDNA maternal lineage is currently rare and predominantly distributed among the European population of the Franco-Cantabrian region (the territory of northern Spain and south France). The closest matches in the complete mtDNA sequence (a difference of one nucleotide position) with the studied sample were found in modern representatives of the Basques and one individual from Denmark. The results obtained may indicate the Western European maternal ancestry of the studied woman from medieval Old Ryazan and the existence of possible common relatives with the modern population of Western Europe. Our study is an example of the use of modern genomic methods to reconstruct the individual history of people whose anthropological materials are presented in museum collections. In addition, the obtained results contribute to understanding the peculiarities of the formation of the genetic structure of the urban population of Rus'.
Keywords
Древняя Русь Старая Рязань древняя ДНК митохондриальная ДНК гаплогруппа HV4a1a полногеномный анализ
Date of publication
07.12.2024
Year of publication
2024
Number of purchasers
0
Views
151

References

  1. 1. Монгайт А.Л. Старая Рязань // Матер. и исследования по археологии СССР. № 49. Матер. и исследования по археологии древнерусских городов. Т. IV. М.: Изд-во АН СССР, 1955. 228 с.
  2. 2. Даркевич В.П., Борисевич Г.В. Древняя столица Рязанской земли: XI-XIII вв. М.: Кругъ, 1995. 448 с.
  3. 3. Селиванов А.В. О раскопках в старой Рязани и в Ново-Ольговском городке. Рязань, 1890. 6 с.
  4. 4. Андреева Т.В., Добровольская М.В., Седов Вл.В. и др. Люди из каменного саркофага № 11 Юрьева монастыря: генетическая история на основе митохондриальных геномов // КСИА. 2023. № 270. С. 418-437.
  5. 5. Андреева Т.В., Малярчук А.Б., Григоренко А.П. и др. Археогенетический анализ индивида из захоронения с территории древнего Ярославского Кремля // КСИА. 2021. Вып. 265. С. 294-308.
  6. 6. Andreeva T.V., Manakhov A.D., Gusev F.E. et al. Genomic analysis of a novel neanderthal from Mezmaiskaya Cave provides insights into the genetic relationships of Middle Palaeolithic populations // Sci. Reports. 2022. V. 12. P. 3016. https://doi.org/10.1038/s41598-022-16164-9
  7. 7. Gansauge M.T., Gerber T., Glocke I. et al. Single-sranded DNA library peparation from highly degraded DNA uing T4 DNA ligase // Nucl. Acids Res. 2017. V. 45. I. 10. P. e79. https://doi.org/10.1093/nar/gkx033
  8. 8. Schubert M., Lindgreen S., Orlando L. AdapterRemoval v2: Rapid adapter trimming, identification, and read merging // BMC Res. Notes. 2016. V. 12. № 9. P. 88. https://doi.org/10.1186/s13104-016-1900-2
  9. 9. Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform // Bioinformatics. 2009. V. 25. № 14. P. 1754-1760. https://doi.org/10.1093/bioinformatics/btp324
  10. 10. Jónsson H., Ginolhac A., Schubert M. et al. MapDamage 2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters // Bioinformatics. 2013. V. 29. № 13. P. 1682-1684. https://doi.org/10.1093/bioinformatics/btt193
  11. 11. Anastasiadou K., Silva M., Booth T. et al. Detection of chromosomal aneuploidy in ancient genomes // Com-mun Biol. 2024. V. 7. № 1. P. 14. https://doi.org/10.1038/s42003-023-05642-z
  12. 12. Weissensteiner H., Pacher D., Kloss-Brandstätter A. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing // Nucl. Acids Res. 2016. V. 44. P. 58-63. https://doi.org/10.1093/nar/gkw233
  13. 13. GenBank [Электронный ресурс]. URL: www.ncbi.nlm.nih.gov/genbank // (дата обращения: 15.05.2024).
  14. 14. BLAST [Электронный ресурс]. URL: https://blast. ncbi. nlm.nih.gov (дата обращения: 15.05.2024).
  15. 15. AmtDB [Электронный ресурс]. URL: AmtDB | About (дата обращения: 15.05.2024).
  16. 16. YFull-MTree 1.02 [Электронный ресурс]. URL: https://www.yfull.com/mtree/ (дата обращения: 15.05.2024).
  17. 17. Mallick S., Micco A., Mah M. et al. The allen ancient DNA resource (AADR) a curated compendium of ancient human genomes // Scientific Data. 2024. V. 11. № 1. P. 182. http://doi.org/10.1038/s41597-024-03031-7 URL:
  18. 18. Eltsov.org [Электронный ресурс]. URL: http://eltsov.org (дата обращения: 15.05.2023).
  19. 19. Takahashi K., Nei M. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used // Mol. Biol. Evol. 2000. V. 17. № 8. P. 1251-1258. http://doi.org/10.1093/oxfordjournals.molbev. a026408
  20. 20. http://www.phylotree.org (дата обращения: 15.05.2024).
  21. 21. Robinson J.T., Thorvaldsdóttir H., Winckler W. et al.Integrative Genomics Viewer // Nat. Biotechnol. 2011. V. 29. № 1. P. 24-26. http://doi.org/10.1038/nbt.1754
  22. 22. GnomAD v 4.1.0 [Электронный ресурс]. URL: https://gnomad.broadinstitute.org (дата обращения: 15.05.2024).
  23. 23. Soares P., Ermini L, Thomson N. et al. Correcting for purifying selection: An improved human mitochondrial molecular clock // Am. J. Hum. Genet. 2009. V. 84. P. 740-759. http://doi.org/10.1016/j.ajhg.2009.05.001
  24. 24. De Fanti S., Barbieri C., Sarno S. et al. Fine dissection of human mitochondrial DNA haplogroup HV lineages reveals paleolithic signatures from European glacial refugia // PLoS One. 2015. V. 10. № 12. http://doi.org/10.1371/journal.pone.0144391
  25. 25. Gómez-Carballa A., Olivieri A., Behar D.M. et al. Genetic continuity in the Franco-Cantabrian region: New clues from autochthonous mitogenomes // PLoS One. 2012. V. 7. № 3. http://doi.org/10.1371/journal.pone.0032851
  26. 26. Cardoso S., Valverde L., Alfonso-Sánchez M.A. et al. The expanded mtDNA phylogeny of the Franco-Cantabrian region upholds the pre-neolithic genetic substrate of Basques // PLoS One. 2013. V. 8. № 7. http://doi.org/10.1371/journal.pone.0067835
  27. 27. García O., Fregel R., Larruga J. et al. Using mitochondrial DNA to test the hypothesis of a European post-glacial human recolonization from the Franco-Cantabrian refuge // Heredity. 2011. V. 106. P. 37-45. http://doi.org/10.1038/hdy.2010.47
  28. 28. García Ó., Alonso S., Huber N. et al. Forensically relevant phylogeographic evaluation of mitogenome variation in the Basque Country. // Forensic Sci.Int. Genet. 2020. V. 46. http://doi.org/10.1016/j.fsigen.2020.102260
  29. 29. Cardoso S., Valverde L., Alfonso-Sánchez M.A. et al. The expanded mtDNA phylogeny of the Franco-Cantabrian region upholds the pre-neolithic genetic substrate of Basques // PLoS One. 2013. V. 8. № 7. http://doi.org/10.1371/journal.pone.0067835.
  30. 30. Olalde I., Brace S., Allentoft M. et al. The Beaker phenomenon and the genomic transformation of northwest Europe // Nature. 2018. V. 555. P. 190-196. http://doi.org/10.1038/nature25738
  31. 31. Gnecchi-Ruscone G.A., Szécsényi-Nagy A., Koncz I. et al. Ancient genomes reveal origin and rapid trans-Eurasian migration of 7th century Avar elites // Cell. 2022. V. 185. № 8. P. 1402-1413. http://doi.org/10.1016/j.cell.2022.03.007
  32. 32. Lazaridis I., Alpaslan-Roodenberg S., Acar A. et al. The genetic history of the Southern Arc: A bridge between West Asia and Europe // Science. 2022. V. 377. http://doi.org/10.1126/science.abm4247
  33. 33. Лихачев Д.С. Великое наследие // Избр. работы в трех томах. Том 2. Л.: Худож. лит.-ра, 1987. С. 154-227.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library