RAS BiologyГенетика Russian Journal of Genetics

  • ISSN (Print) 0016-6758
  • ISSN (Online) 3034-5103

Alu polymorphisms of autophagy and apoptosis regulatory genes as human lifespan factors

PII
S30345103S0016675825010092-1
DOI
10.7868/S3034510325010092
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 1
Pages
91-102
Abstract
To assess the contribution to survival of Alu-insertions in the ACE, PLAT, COL13A1, LAMA2, CDH4, SEMA6A, PKHD1L1, STK38L, HECW1, TEAD1 genes, which are candidates of aging and longevity, amid the senile physiological and pathological phenotype, was carried out the association analysis with life expectancy. Survival and mortality data were obtained for 1,382 elderly people, who were selected from the sample of Tatars residing in the Republic of Bashkortostan (total 1790 people from 18 to 109 years). Mortality risk was higher among carriers of the STK38L Alu-insertion genotype (Ya5ac2145*II, HR = 2.07, P = 0.02). Alu-insertion in the HECW1 and TEAD1 genes has demonstrated a survival protection effect (Ya5NBC182*II, HR = 0.71, P = 0.038 and Ya5ac2013*II, HR = 0.74, P = 0.035 respectively). The survival amid the persons with various clinical phenotypes was associated with the Alu polymorphism of the SEMA6A (Yb8NBC597*ID, HR = 0.54, P = 0.016 for the cerebrovascular diseases), TEAD1 (Ya5ac2013*II, HR = 0.57, P = 0.016 for the cardiovascular pathologies) and LAMA2 (Ya5-MLS19*ID, HR = 0.36, P = 0.03 for multimorbidity status) genes. Thus, the genes involved in the regulation of autophagy and apoptosis were associated with survival and longevity.
Keywords
старение долголетие Alu-полиморфизм гены TEAD1 HECW1 STK38L LAMA2 SEMA6A анализ выживаемости
Date of publication
01.01.2025
Year of publication
2025
Number of purchasers
0
Views
21

References

  1. 1. Мушкамбаров Н.Н. Геронтология in polemico. Монография. М.: “Мед. информ. агентство”, 2011. 464 с.
  2. 2. Чупаха М.В., Белоусова О.Н., Сухатерина Е.В. Характеристика биологического возраста и данных антропометрии при артериальной гипертензии на фоне метаболического синдрома у пациентов среднего и пожилого возраста // Соврем. проблемы здравоохранения и мед. статистики. 2024. № 1. С. 335–347. https://doi.org/10.24412/2312-2935-2024-1-335-347
  3. 3. Maier H., Jeune B., Vaupel J.W. Exceptional Lifespans. Springer Nature, 2021. 344 p.
  4. 4. Le Breton A., Bettencourt M.P., Gendrel A.V. Navigating the brain and aging: Exploring the impact of transposable elements from health to disease // Front. Cell. Dev. Biol. 2024. V. 12. https://doi.org/10.3389/fcell.2024.1357576
  5. 5. Maxwell P.H. What might retrotransposons teach us about aging? // Curr. Genet. 2016. V. 62. P. 277–282. https://doi.org/10.1007/s00294-015-0538-2
  6. 6. Li M., Schifanella L., Larsen P.A. Alu retrotransposons and COVID-19 susceptibility and morbidity // Hum. Genomics. 2021. V. 15. P. 2–11. https://doi.org/10.1186/s40246-020-00299-9
  7. 7. Эрдман В.В., Каримов Д.Д., Насибуллин Т.Р. и др. Роль Alu-полиморфизма генов PLAT, PKHD1L1, STK38L и TEAD1 в формировании признака долгожительства // Успехи геронтологии. 2016. Т. 29. № 5. С. 709–716.
  8. 8. Каримов Д.Д., Эрдман В.В., Насибуллин Т.Р. и др. Alu-инсерционно-делеционный полиморфизм генов COL13A1 и LAMA2: анализ ассоциаций с долгожительством // Генетика. 2016. Т. 52. №. 10. С. 1185–1193. https://doi.org/10.7868/S0016675816100039
  9. 9. Erdman V.V., Karimov D.D., Tuktarova I.A. et al. Alu deletions in LAMA2 and CDH4 genes are key components of polygenic predictors of longevity // Intern. J. of Mol. Sci. 2023. № 21. https://doi.org/10.3390/ijms232113492
  10. 10. Wang D., He J., Huang B. et al. Emerging role of the Hippo pathway in autophagy // Cell Death & Disease. 2020. V. 11. № 10. P. 880. https://doi.org/10.1038/s41419-020-03069-6
  11. 11. Zhou Y.H., Huang T.T., Cheng A.S.L. et al. The TEAD family and its oncogenic role in promoting tumorigenesis // Intern. J. Mol. Sci. 2016. V. 17. № 1. P. 138. https://doi.org/10.3390/ijms17010138
  12. 12. Reed M.J., Damodarasamy M., Banks W.A. The extracellular matrix of the blood-brain barrier: Structural and functional roles in health, aging, and Alzheimer’s disease // Tissue Barriers. 2019. V. 7. № 4. https://doi.org/10.1080/21688370.2019.1651157
  13. 13. Carmignac V., Svensson M., Körner Z. еt аl. Autophagy is increased in laminin α2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A // Human Mol. Genet. V. 20. № 24. P. 4891–4902. https://doi.org/10.1093/hmg/ddr427
  14. 14. Fard D., Tamagnone L. Semaphorins in health and disease // Cytokine & Growth Factor Reviews. 2021. V. 57. P. 55–63. https://doi.org/10.1016/j.cytogfr.2020.05.006
  15. 15. Zhang C., Hong C.D., Wang H.L. et al. The role of semaphorins in small vessels of the eye and brain // Pharmacol. Research. 2020. V. 160. https://doi.org/10.1016/j.phrs.2020.105044
  16. 16. Kaushik A., Parashar S., Ambasta R.K., Kumar P. Ubiquitin E3 ligases assisted technologies in protein degradation: Sharing pathways in neurodegenerative disorders and cancer // Ageing Res. Reviews. 2024. V. 96. P. 102279. https://doi.org/10.1016/j.arr.2024.102279
  17. 17. Le D., Brown L., Malik K., Murakami S. Two opposing functions of angiotensin-converting enzyme (ACE) that links hypertension, dementia, and aging // Intern. J. Mol. Sci. 2021. V. 22. № 24. https://doi.org/10.3390/ijms222413178
  18. 18. Loos R.J.F., Yeo G.S.H. The genetics of obesity: from discovery to biology // Nature Rev. Genet. 2022. V. 23. № 2. P. 120–133. https://doi.org/10.1038/s41576-021-00414-z
  19. 19. Yepes M. The plasminogen activation system promotes neurorepair in the ischemic brain // Current Drug Targets. 2019. V. 20. № 9. P. 953–959. https://doi.org/10.2174/1389450120666181211144550
  20. 20. Resink T.J., Joshi M.B., Kyriakakis E. Cadherins and cardiovascular disease // Swiss Med. Weekly. 2009. V. 139. № 0910. P. 122–134.
  21. 21. Cordaux R., Batzer M.A. The impact of retrotransposons on human genome evolution // Nature Rev. Genet. 2009. V. 10. № 10. P. 691–703. https://doi.org/10.1038/nrg2640
  22. 22. Nefedova L.N., Kim A.I. The role of retroelements in the evolution of animal genomes // Biol. Bul. Reviews. 2022. V. 12. № 1. P. 29–40. https://doi.org/10.1134/S2079086422010042
  23. 23. Davidson-Pilon C. Lifelines: Survival analysis in Python // J. Open Source Software. 2019. V. 4. № 40. P. 1317. https://doi.org/10.21105/joss.01317
  24. 24. Cao L., Li H., Liu X. et al. Expression and regulatory network of E3 ubiquitin ligase NEDD4 family in cancers // BMC Cancer. 2023. V. 23. № 1. P. 526. https://doi.org/10.1186/s12885-023-11007-w
  25. 25. Li Y., Zhang L., Zhou J. et al. Nedd4 E3 ubiquitin ligase promotes cell proliferation and autophagy // Cell Proliferation. 2015. V. 48. № 3. P. 338–347. https://doi.org/10.1111/cpr.12184
  26. 26. Li Y., Ozaki T., Kikuchi H. et al. A novel HECT-type E3 ubiquitin protein ligase NEDL1 enhances the p53-mediated apoptotic cell death in its catalytic activity-independent manner // Oncogene. 2008. V. 27. № 26. P. 3700–3709. https://doi.org/10.1038/sj.onc.1211032
  27. 27. Quiroga M., Rodríguez-Alons A., Alfonsín G. et al. Protein degradation by E3 ubiquitin ligases in cancer stem cells // Cancers. 2022. V. 14. https://doi.org/10.3390/cancers14040990
  28. 28. Huang S.S., Hsu L.J., Chang N.S. Functional role of WW domain-containing proteins in tumor biology and diseases: Insight into the role in ubiquitin-proteasome system // FASEB Bioadv. 2020. V. 2. P. 234–253. https://doi.org/10.1096/fba.2019-00060
  29. 29. Гомбоева Д.Е., Брагина Е.Ю., Назаренко М.С., Пузырев В.П. Обратная коморбидность между онкологическими заболеваниями и болезнью Гентингтона: обзор эпидемиологических и биологических доказательств // Генетика. 2020. Т. 56. № 3. С. 260–271. https://doi.org/10.31857/S0016675820030054
  30. 30. Piccolo S., Dupont S., Cordenonsi M. The biology of YAP/TAZ: Hippo signaling and beyond // Physiol. Reviews. 2014. V. 94. № 4. P. 1287–1312. https://doi.org/10.1152/physrev.00005.2014
  31. 31. Ramaccini D., Pedriali G., Perrone M. et al. Some insights into the regulation of cardiac physiology and pathology by the Hippo pathway // Biomedicines. 2022. V. 10. № 3. P. 726. https://doi.org/10.3390/biomedicines10030726
  32. 32. Lin K.C., Park H.W., Guan K.L. Regulation of the Hippo pathway transcription factor TEAD // Trends Biochem. Sci. 2017. V. 42. P. 862–872. https://doi.org/10.1016/j.tibs.2017.09.003
  33. 33. Zhang Y., Ren Y., Li X. et al. A review on decoding the roles of YAP/TAZ signaling pathway in cardiovascular diseases: Bridging molecular mechanisms to therapeutic insights // Intern. J. Biol. Macromolecules. 2024. https://doi.org/10.1016/j.ijbiomac.2024.132473
  34. 34. Hergovich A. The roles of NDR protein kinases in Hippo signalling // Genes. 2016. V. 7. № 5. P. 21. https://doi.org/10.3390/genes7050021
  35. 35. Sharif A.A.D., Hergovich A. The NDR/LATS protein kinases in immunology and cancer biology // Seminars in Cancer Biology. 2018. V. 48. P. 104–114.
  36. 36. Jonischkies K., Del Angel M., Demiray Y.E. et al. The NDR family of kinases: Essential regulators of aging // Frontiers in Mol. Neurosci. 2024. V. 17. https://doi.org/10.3389/fnmol.2024.1371086
  37. 37. Rawat P., Thakur S., Dogra S. et al. Diet-induced induction of hepatic serine/threonine kinase STK38 triggers proinflammation and hepatic lipid accumulation // J. Biol. Chemistry. 2023. V. 299. № 5. https://doi.org/10.1016/j.jbc.2023.104678
  38. 38. Aman Y., Schmauck-Medina T., Hansen M. et al. Autophagy in healthy aging and disease // Nat. Aging. 2021. V. 1. № 8. P. 634–650. https://doi.org/10.1038/s43587-021-00098-4
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library