RAS BiologyГенетика Russian Journal of Genetics

  • ISSN (Print) 0016-6758
  • ISSN (Online) 3034-5103

VNTR polymorphism of the AS3MT gene modifies the association of age of onset of schizophrenia with pre- and perinatal hypoxia

PII
S0016675825050082-1
DOI
10.31857/S0016675825050082
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 5
Pages
89-95
Abstract
The interaction of environmental factors and genetic predisposition factors can action not only the risk of developing schizophrenia, but also its course and functional outcome. Hypoxia in the prenatal and perinatal period is an important environmental risk factor. It can lead to disruption of the brain development and nervous system in the fetus and newborn and, as a consequence, to the development of psychopathology at a later age. In turn, the VNTR polymorphism of the AS3MT (arsenite methyltransferase) gene plays an important role in regulating the expression of the unique AS3MTd2d3 isoform, which is a potential risk factor for the development of schizophrenia. In our work, we studied the effect of interaction between hypoxia and VNTR AS3MT on one of the clinical characteristics of the disease – the age of onset of schizophrenia. The study included 520 patients with schizophrenia from the Russian population, including 170 people who had a history of hypoxia in the prenatal or perinatal period. It was found that women with a history of hypoxia and the V2/V2 genotype have an earlier age of disease onset associated with a poor prognosis of the disease.
Keywords
полиморфизм VNTR ген AS3MT возраст начала шизофрении гипоксия
Date of publication
06.11.2025
Year of publication
2025
Number of purchasers
0
Views
46

References

  1. 1. Хоменко Н.В. Генетические и средовые факторы в развитии шизофрении // Мед. журнал. 2012. № 2. С. 15–18.
  2. 2. Hilker R., Helenius D., Fagerlund B. et al. Heritability of schizophrenia and schizophrenia spectrum based on the nationwide Danish twin register // Biol. Psychiatry. 2018. V. 83. № 6. P. 492–498. https://doi.org/10.1016/j.biopsych.2017.08.017
  3. 3. Stefansson H., Ophof R.A., Steinberg S. et al. Common variants conferring risk of schizophrenia // Nature. 2009. V. 460. № 7256. P. 744–747. https://doi.org/10.1038/nature08186
  4. 4. Gejman P.V., Sanders A.R., Duan J. The role of genetics in the etiology of schizophrenia // Psychiatr. Clin. North Am. 2010. V. 33. № 1. P. 35–66. https://doi.org/10.1016/j.psc.2009.12.003
  5. 5. Trubetskoy V., Pardiña A.F., Qi T. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia // Nature. 2022. V. 604. P. 502–508. https://doi.org/10.1038/s41586-022-04434-5
  6. 6. Lam M., Chen C.Y., Li Z. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations // Nat. Genet. 2019. V. 51. № 12. Р. 1670–1678. https://doi.org/10.1038/s41588-019-0512-x
  7. 7. Schizophrenia Working Group of the Psychiatric Genomics Consortium, Ripke S., Walters J.T., O’Donovan M.C. Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia // MedRxiv. 2020.09.12.20192922. https://doi.org/10.1101/2020.09.12.20192922
  8. 8. Polderman T.J., Benyamin B., de Leeuw C.A. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies // Nat. Genet. 2015. V. 47. № 7. P. 702–709. https://doi.org/10.1038/ng.3285
  9. 9. European Network of Schizophrenia Networks for the Study of Gene-Environment Interactions. Schizophrenia etiology: Do gene-environment interactions hold the key? // Schizophr. Res. 2008. V. 102. № 1–3. P. 21–26. https://doi.org/10.1016/j.schres.2008.04.003
  10. 10. Мазаева Н.А. Шизофрения: пренатальные и постнатальные факторы риска // Журнал неврол. и психиатрии им. С.С. Корсакова. 2012. Т. 112. № 5. Р. 98–107.
  11. 11. Tsuang M. Schizophrenia: Genes and environment // Biol. Psychiatry. 2000. V. 47. № 3. P. 210–220. https://doi.org/10.1016/s0006-3223 (99)00289-9
  12. 12. Licinio J. Gene-environment interactions in molecular psychiatry // Mol. Psychiatry. 2002. V. 7. № 2. P. 123–124. https://doi.org/10.1038/sj.mp.4001066
  13. 13. Kelly J., Murray R.M. What risk factors tell us about the causes of schizophrenia and related psychoses // Curr. Psychiatry Rep. 2000. V. 2. № 5. P. 378–385. https://doi.org/10.1007/s11920-000-0019-1
  14. 14. Van Os J., Rutten B.P., Poulton R. Gene-environment interactions in schizophrenia: Review of epidemiological findings and future directions // Schizophr. Bull. 2008. V. 34. № 6. P. 1066–1082. https://doi.org/10.1093/schbul/sbn117
  15. 15. Mittal V.A., Ellman L.M., Cannon T.D. Gene-environment interaction and covariation in schizophrenia: The role of obstetric complications // Schizophr. Bull. 2008. V. 34. № 6. P. 1083–1094. https://doi.org/10.1093/schbul/sbn080
  16. 16. Giannopoulou I., Pagida M.A., Brian D.D. et al. Perinatal hypoxia as a risk factor for psychopathology later in life: The role of dopamine and neurotrophins // Hormones. 2018. V. 17. P. 25–32. https://doi.org/10.1007/s42000-018-0007-7
  17. 17. Davies C., Segre G., Estradé A. et al. Prenatal and perinatal risk and protective factors for psychosis: A systematic review and meta-analysis // The Lancet Psychiatry. 2020. V. 7. № 5. P. 399–410. https://doi.org/10.1016/S2215-0366 (20)30057-2
  18. 18. Dalman C., Thomas H.V., David A.S. et al. Signs of asphyxia at birth and risk of schizophrenia. Population-based case-control study // Br. J. Psychiatry. 2001. V. 179. P. 403–408. https://doi.org/10.1192/bjp.179.5.403
  19. 19. Wortinger L.A., Shadrin A.A., Szabo A. et al. The impact of placental genomic risk for schizophrenia and birth asphyxia on brain development // Transl. Psychiatry. 2023. V. 13. № 1. P. 343–351. https://doi.org/10.1038/s41398-023-02639-4
  20. 20. Wortinger L.A., Stavrum A.K., Shadrin A. et al. Divergent epigenetic responses to perinatal asphyxia in severe mental disorders // Transl. Psychiatry. 2024. V. 14. № 1. P. 16–27. https://doi.org/10.1038/s41398-023-02709-7
  21. 21. Nalivaeva N.N., Turner A.J., Zhuravin I.A. Role of prenatal hypoxia in brain development, cognitive functions, and neurodegeneration // Front. Neurosci. 2018. V. 12. P. 825–845. https://doi.org/10.3389/fnins.2018.00825
  22. 22. Schmidt-Kastner R., van Os J., Esquivel G. et al. An environmental analysis of genes associated with schizophrenia: Hypoxia and vascular factors as interacting elements in the neurodevelopmental model // Mol. Psychiatry. 2012. V. 17. № 12. P. 1194–1205. https://doi.org/10.1038/mp.2011.183
  23. 23. Korovaitseva G.I., Gabaeva M.V., Yunilainen O.A., Golimbet V.E. Effect of VNTR polymorphism of the AS3MT gene and obstetrical complications on the severity of schizophrenia // Bull. Exp. Biol. Med. 2019. V. 168. № 1. Р. 84–86. https://doi.org/10.1007/s10517-019-04653-3
  24. 24. Haukvik U.K., Agartz I. Økerkomplikasjoner under svangerskapogfødselrisikoen for schizofreni? [Do obstetric complications increase the risk of schizophrenia?] // Tidsskr Nor. Laegeforen. 2010. V. 130. № 3. P. 270–272. (Norwegian). https://doi.org/10.4045/tidsskr.09.0699
  25. 25. Wortinger L.A., Barth C., Nerland S. et al. Association of birth asphyxia with regional white matter abnormalities among patients with schizophrenia and bipolar disorders // JAMA Network Open. 2021. V. 4. № 12. https://doi.org/10.1001/jamanetworkopen.2021.39759
  26. 26. Cannon T.D., Thompson P.M., van Erp T.G.M. et al. Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia // Proc. Natl Acad. Sci. USA. 2002. V. 99. P. 3228–3233. https://doi.org/10.1073/pnas.052023499
  27. 27. Cannon T.D., van Erp T.G.M., Rosso I.M. et al. Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls // Arch. Gen. Psychiatry. 2002. V. 59. № 1. P. 35–41. https://doi.org/10.1001/archpsyc.59.1.35
  28. 28. Wortinger L.A., Engen K., Barth C. et al. Asphyxia at birth affects brain structure in patients on the schizophrenia-bipolar disorder spectrum and healthy participants // Psychol. Med. 2022. V. 52. № 6. P. 1050–1059. https://doi.org/10.1017/S0033291720002779
  29. 29. Wang X., Cui L., Ji X. Cognitive impairment caused by hypoxia: From clinical evidences to molecular mechanisms // Metab. Brain Dis. 2022. V. 37. № 1. P. 51–66. https://doi.org/10.1007/s11011-021-00796-3
  30. 30. Li M., Jaffe A.E., Straub R.E. et al. A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus // Nat. Med. 2016. V. 22. № 6. Р. 649–656. https://doi.org/10.1038/nm.4096
  31. 31. Cai X., Yang Z.H., Li H.J. et al. A human-specific schizophrenia risk tandem repeat affects alternative splicing of a human-unique isoform AS3MTd2d3 and mushroom dendritic spine density // Schizophr. Bull. 2021. V. 47. № 1. P. 219–227. https://doi.org/10.1093/schbul/sbaa098
  32. 32. Zhao W., Zhang Q., Chen X. et al. The VNTR of the AS3MT gene is associated with brain activations during a memory span task and their training-induced plasticity // Psychol. Med. 2021. V. 51. № 11. P. 1927–1932. https://doi.org/10.1017/S0033291720000720
  33. 33. Li X., Xiao Y., Zhao Q. et al. The neuroplastic effect of working memory training in healthy volunteers and patients with schizophrenia: Implications for cognitive rehabilitation // Neuropsychologia. 2015. V. 75. P. 149–162. https://doi.org/10.1016/j.neuropsychologia.2015.05.029
  34. 34. Thermenos H.W., Keshavan M.S., Juelich R.J. et al. A review of neuroimaging studies of young relatives of individuals with schizophrenia: a developmental perspective from schizotaxia to schizophrenia // Am. J. Med. Genet. (part B Neuropsychiatr. Genet.). 2013. V. 162. № 7. P. 604–635. https://doi.org/10.1002/ajmg.b.32170
  35. 35. Kirov G., Jones P.B., Harvey I. et al. Do obstetric complications cause the earlier age at onset in male than female schizophrenics? // Schizophr. Res. 1996. V. 2. № 1–2. P. 117–124. https://doi.org/10.1016/0920-9964 (95)00063-1
  36. 36. Rosso I.M., Cannon T.D., Huttunen T. et al. Obstetric risk factors for early-onset schizophrenia in a Finnish birth cohort // Am. J. Psychiatry. 2000. V. 157. № 5. P. 801–807. https://doi.org/10.1176/appi.ajp.157.5.801
  37. 37. Cannon T.D., Rosso I.M., Hollister J.M. et al. A prospective cohort study of genetic and perinatal influences in the etiology of schizophrenia // Schizophr. Bull. 2000. V. 26. № 2. P. 351–366. https://doi.org/10.1093/oxfordjournals.schbul.a033458
  38. 38. Zhan N., Sham P.C., So H.C., Lui S.S.Y. The genetic basis of onset age in schizophrenia: evidence and models // Front. Genet. 2023. V. 14. https://doi.org/10.3389/fgene.2023.1163361
  39. 39. Коровайцева Г.И., Лежейко Т.В., Олейчик И.В., Голимбет В.Е. Ассоциация полиморфизма VNTR гена AS3MT с риском развития шизофрении // Генетика. 2023. Т. 59. № 4. С. 481–486. http://doi.org/10.31857/S0016675823040045
  40. 40. Immonen J., Jääskeläinen E., Korpela H., Miettunen J. Age at onset and the outcomes of schizophrenia: A systematic review and meta-analysis // Early Interv. Psychiatry. 2017. V. 11. № 6. P. 453–460. https://doi.org/10.1111/eip.12412
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library